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ABSTRACT
We present a simplified version of an average-atom collisional-radiative model employing both local-thermodynamic-equilibrium average-
atom and isolated-ion atomic data. The simplifications introduced do not lead to any substantial errors, and they significantly speed up
calculations compared with the basic average-atom model involving direct solution of the self-consistent-field equations. Average ion charges,
charge state distributions, and emission spectra of non-local-thermodynamic-equilibrium (NLTE) gold plasmas calculated using various
modifications of the average-atom collisional-radiative model are compared with those obtained using the THERMOS model with the detailed
configuration accounting approach. We also propose an efficient method to calculate thermodynamic functions of NLTE plasmas in the
context of the simplified average-atom collisional-radiative model.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0098814

I. INTRODUCTION

Ionization balance of non-local-thermodynamic-equilibrium
(NLTE) plasmas is generally calculated using collisional–radiative
models that enable one to represent plasma particle-to-particle and
particle-to-radiation interactions at various levels of detail. Most of
these models are based on the chemical-picture approach which
deals with plasma ions in various quantum states and free electrons1

so that relative populations of detailed ion states or some sets of these
(e.g., electronic configurations or superconfigurations1,2) are related
to each other by rate equations. To solve these equations, one needs
first to generate consistent datasets of the relevant energy levels and
atomic-process rates.

In principle, the ionization balance of NLTE plasmas along
with their radiative and thermodynamic properties might be
accurately represented through a detailed ion-state accounting
approach. However, in hot plasmas, even the number of essentially

populated electronic configurations frequently appears to be so
large that NLTE radiation-hydrodynamics modeling becomes
prohibitively expensive. In such cases, one can employ a collisional-
radiative model for the sets of electronic configurations with
close average energies, i.e., superconfigurations,1,3–6 which provides
the possibility to considerably reduce computational cost with-
out noticeable loss of accuracy. The use of a superconfiguration
collisional–radiative model, however, faces an additional difficulty
stemming from the need to evaluate the effective temperatures
responsible for the energy distribution of electronic configurations
within superconfigurations.1,7–10 On the other hand, some aver-
aged account of bound-electron structure may be obtained on
the basis of a screened-hydrogenic model characterizing electronic
shells solely by their principal quantum numbers.11 Although this
model enables one to significantly reduce computational cost, it
does not provide any way to give a detailed description of radiative
properties.

Matter Radiat. Extremes 7, 064401 (2022); doi: 10.1063/5.0098814 7, 064401-1

© Author(s) 2022

https://scitation.org/journal/mre
https://doi.org/10.1063/5.0098814
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0098814
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0098814&domain=pdf&date_stamp=2022-September-27
https://doi.org/10.1063/5.0098814
http://orcid.org/0000-0002-6863-4654
https://orcid.org/0000-0002-2741-0304
https://orcid.org/0000-0003-4613-6301
https://orcid.org/0000-0003-4767-9017
https://orcid.org/0000-0001-9394-9810
http://orcid.org/0000-0003-0106-6098
mailto:ovechkin.an@mail.ru
https://doi.org/10.1063/5.0098814


Matter and
Radiation at Extremes RESEARCH ARTICLE scitation.org/journal/mre

In many applications, detailed knowledge of fractional ionic
abundances is not necessary, and one can therefore restrict
consideration to the calculation of averaged quantities (average
electron-shell occupation numbers and average ion charges) in the
context of the average-atom approach.12,13 Most NLTE average-
atom models employ the screened-hydrogenic formulation, either
including14 or ignoring11 the one-electron energy dependence on
the orbital quantum numbers. In these models, electron energies
are found in an effective Coulomb potential allowing for outer-
shell screening. The charge of this potential is specific to each
individual atomic shell and depends on the screening of the nuclear
Coulomb potential by the inner-shell electrons. Such models are
very inexpensive computationally and are therefore routinely used
in radiation-hydrodynamics modeling.15 In the present work, how-
ever, we deal with alternative average-atom models16–18 in which
one-electron energies and wavefunctions are found from numerical
solution of the Schrödinger or Dirac equation with self-consistent-
field (SCF) potentials. These models enable one to provide more
realistic descriptions of material properties than the screened-
hydrogenic models—specifically because of their consistent treat-
ment of plasma density effects, which are automatically included at
the stage of solution of the SCF equations in an electrically neutral
atomic cell. Nevertheless, for radiation-hydrodynamics modeling,
solution of the SCF equations with the NLTE electron-shell occu-
pation numbers repeated over and over again for different values
of free-electron temperature and material density would present a
formidable task. Therefore, we have developed a simplified, much
more tractable, version of the NLTE average-atom model, described
in Sec. II.

This NLTE average-atom model is implemented in the RESEOS
code19,20 originally developed to calculate thermodynamic and opti-
cal properties of LTE plasmas on the basis of the Liberman21 and
neutral Wigner–Seitz sphere22 models along with a generalized
version19 of the superconfiguration approach.2,23 In Sec. III, the
average ion charges, charge-state distributions, and emission spectra
of NLTE gold plasmas calculated with RESEOS are compared with
those ones obtained using the THERMOS code18,24,25 utilizing the
detailed configuration accounting approach and with experimental
data.26,27 Section IV describes an efficient and reasonably accurate
method for calculating the electron components of the pressure and
internal energy of NLTE plasmas.

II. AVERAGE-ATOM COLLISIONAL-RADIATIVE MODEL
In the average-atom collisional-radiative model,12,13,16,17 one

needs to solve the rate equations for average occupation numbers
of electron shells. In the steady-state approximation, these equations
take the form

−NmLm + (gm −Nm)Sm = 0, (1)

where Nm is the average occupation number of subshell (relativistic
shell) m characterized by the set of quantum numbers nm, lm, jm
(standing for the principal quantum number and the one-electron
orbital and total angular momenta, respectively) and its degener-
acy gm = 2jm + 1. In Eq. (1), the sink (Lm) and source (Sm) terms

represent the total rates of atomic processes respectively depopulat-
ing and populating the mth subshell:

Lm =∑
k
(R(c)mk + R(r)mk )(1 −Nk/gk) + R(c)mc + R(r)mc + Am, (2)

Sm =
1

gm
∑

k
(R(c)km + R(r)km )Nk + R(c)cm + R(r)cm +Dm, (3)

where Am and Dm are the autoionization and dielectronic capture
rates, respectively. Subscripts a and b in the notation for the atomic-
process rates R(c,r)

ab refer to the electron subshells m and k or the
continuum state c involved in the relevant one-electron transition
a→ b, while the superscripts correspond to the type of atomic
process—collisional (c) or radiative (r).

Note that in the non-steady-state situations encountered in
hydrodynamics simulations, the right-hand side of Eq. (1) becomes
dNm/dt, which can be readily approximated by some finite-
difference formula and even improves the convergence of iterations
for obtaining occupation numbers (which may be coupled with iter-
ations to obtain the radiation field and free-electron temperature) at
the running time step. In the present paper, we deal only with the
steady-state cases and therefore omit the term dNm/dt.

Below, we present detailed expressions for the atomic-process
rates employed in RESEOS.

For collisional excitation, we account only for the dipole tran-
sitions k→ m with ∣lk − lm∣ = 1 and ∣ jk − jm∣ ⩽ 1, and we use an
expression for the rate R(c)km (εk < εm) that is applicable in both the
limits of large and small free-electron energies:

R(c)km =
4
√

2πβe4Z0 n0
i fkm

√
meεkm

Λ(β εkm), (4)

Λ(x) = exp(−x)[exp(x)E1(x) +
πa
√

3
]

≈ exp(−x) ln[
1

exp(γ)x
+ exp(

πa
√

3
)]. (5)

Here, e is the elementary charge, me is the electron mass, and
Z0 is the average ion charge (in units of e), defined as the difference
between the nuclear charge Z (also in units of e) and the number of
bound electrons:

Z0 = Z −∑
m

Nm, (6)

εj is the one-electron energy relevant to subshell j, εkm = εm − εk,
β = 1/Te, with Te being the free-electron temperature (in energy
units), n0

i is the ion density, E1(x) = ∫
∞

x exp(−t) dt/t, γ = 0.5772 . . .
is the Euler–Mascheroni constant, and fkm is the oscillator strength
of the one-electron transition k→ m. The parameter a in Eq. (5)
is set to 0.2 to provide the threshold value of the excitation cross-
section approximating the results of benchmark calculations for
positive ions in the distorted-wave approximation.28 This value of
a would be incorrect for neutral atoms,28 but this is not the case
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here since the present average-atom model itself does not work at
temperatures so low that neutral atoms could exist.

To derive Eqs. (4) and (5), one should consider only binary
electron–ion collisions and assume that at sufficiently large energies
ε of the incident electron (compared with εkm), the momentum q
transferred to the ion is constrained within the limits29

qmin =
√

2me ε −
√

2me(ε − εkm) ≈
√

me εkm/
√

2ε,

qmax =
√

2me ε +
√

2me(ε − εkm) ≈ 2
√

2me ε.
(7)

An additional restriction on the momentum q follows from
the validity condition for the binary-collision approximation (see
Ref. 30):31 q ≳ h/d, where h is the reduced Planck constant and d
is the characteristic range of localization of the plasma-ion potential,

d = max(r0, rDe), (8)

with r0 = [3/(4πn0
i )]

1/3 and rDe the electron Debye radius. Using
the fact that ε ∼ 1/β, the relevant restriction on the argument
of the Coulomb logarithm Λ(βεkm) takes the form qmax/qmin

∼
√

meε/qmin ∼ ε/εkm ∼ 1/(βεkm) ≲
√

me d/(h̵
√

β). Therefore, in
the case βεkm < h̵

√
β/(
√

me d), we replace the argument of the
Coulomb logarithm βεkm by h̵

√
β/(
√

me d). This enables us to avoid
unphysically large values of the collisional excitation rates in the case
of very small transition energies.

The collisional deexcitation rate follows from the known
principle of detailed balance:

gmR(c)mk = gk eβεkm R(c)km . (9)

The collisional ionization rate is calculated using the modified
Lotz formula:16,32

R(c)mc =
2K
√

2πβ e4Z0 n0
i

π
√

me∣εm∣
E1(max(β∣εm∣,

h̵
√

β
√

me d
)), (10)

where K = 2.27.16 The three-body recombination rate is connected
with the collisional ionization rate by the principle of detailed
balance (see Ref. 33):

R(c)cm = exp[β(μe − εm)]R(c)mc , (11)

where μe is the chemical potential of free electrons.
For sufficiently narrow profiles of absorption/emission lines,

the rate of radiative excitation/deexcitation may be written as (see,
e.g., Ref. 1)

R(r)km =
2e2

h̵2me c3 ε2
km∣ fkm∣[θ(εmk) + F(∣εkm∣)]. (12)

Here, c is the speed of light, θ(x) is the Heaviside function, and

F(ω) =
1

4π ∫
f (ω, Ω) dΩ (13)

with f (ω, Ω) being the distribution function of photons with
energy ω and a specific polarization relative to the dimensionless
phase-space unit volume drdp/(2πh)3. The function (13) is read-
ily expressed in terms of the radiation-energy spectral density U(ω)
as F(ω) = π2

(hc)3U(ω)/ω3.
The photoionization (R(r)mc ) and photorecombination (R(r)cm )

rates are evaluated in a similar way:

R(r)mc =
2e2

h̵2me c3

∞

∫

∣εm ∣

ω2 fm(εm + ω)[1 − n(εm + ω)]F(ω) dω, (14)

R(r)cm = exp[β(μe − εm)]
2e2

h̵2me c3

∞

∫

∣εm ∣

ω2 fm(εm + ω)

× [1 − n(εm + ω)] exp(−βω)[1 + F(ω)] dω, (15)

where n(ε) is the Fermi–Dirac distribution

n(ε) =
1

1 + exp[β(ε − μe)]
. (16)

The bound–free oscillator strength fm(ε) can be calculated
in the distorted-wave approximation with the numerical wave-
functions found in an SCF potential (e.g., an average-atom or
isolated-ion potential):

fm(ε) =
me(ε − εm)

3h̵2 ∑
lc=lm±1,jc

2jc + 1
jm + jc + 1

× [δ∣ jm−jc ∣,1 + δ∣ jm−jc ∣,0
2

(2lm + 1)(2lc + 1)
]r2

m,εlc jc
, (17)

rm,εlc jc =

∞

∫

0

r[Pm(r)Pεlc jc(r) +Qm(r)Qεlc jc(r)] dr, (18)

where δab is the Kronecker delta, and P(r)/r and Q(r)/r are
the major and the minor radial components of an electron
wavefunction, respectively. An alternative simplified approach to
evaluate fm(ε) for multielectron ions is to formally generalize the
Kramers formula for hydrogen-like ions (see, e.g., Ref. 34) using its
well-known representations

fm(ε) =
4m2

e e8Z4
m

3
√

3 πh̵4 n5
m(ε − εm)3

(19)

and

fm(ε) =
8
√

2me e2 Zm∣εm∣
3/2

3
√

3 πh̵n2
m(ε − εm)3

. (20)

An effective screened nuclear charge Zm “seen” by the electrons
occupying subshell m is evaluated with More’s screening matrix
σnr :11

Zm ≡ Znm = Z − ∑
n<nm

σnmnGn −
1
2

σnmnm Gnm , (21)
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where Gn = ∑nj=nNj is the total occupation number of all subshells
with the same principal quantum number n. In general, Eqs. (19)
and (20) yield different values—the results coinciding only when
∣εm∣ = me e4Z2

m/(2h̵2n2
m), i.e., for nonrelativistic hydrogen-like ions.

In the case of multielectron ions, however, this condition cannot be
met even in the context of the screened-hydrogenic model, owing to
the disregard of the screening from the outer-shell electrons.11

The autoionization rate Am in Eq. (2) is found as the net
rate of one-electron transitions m→ c from subshell m to the con-
tinuum occurring simultaneously with all possible bound–bound
one-electron transitions j→ i from upper subshells j to lower
ones i:35

Am =∑
ji

Nj(gi −Ni)Amc
ji θ(εj − εi + εm). (22)

Taking into account only dipole transitions with ∣li − lj∣ = 1, ∣ ji − jj∣

⩽ 1, ∣lm − lc∣ = 1, and ∣ jm − jc∣ ⩽ 1, disregarding the exchange terms,
and assuming the wavefunction at the inner subshell i to be localized
in a much smaller volume than that at the upper subshell m, we get
the following expression for the rate Amc

ji (see Ref. 13):

Amc
ji =

3πε2
ij fij

2gjh̵Z2
m

fm(ε)(1 − n(ε))∣ε=εj−εi+εm. (23)

Equation (23) also implies that the electron potential in the peak
region of the m-subshell radial wavefunction may be approximated
by the Coulomb potential with screening from the outer electrons:

V(r) ≈ −
Zme2

r
+ const. (24)

In line with this assumption, it would be appropriate to cal-
culate bound–free oscillator strengths fm(ε) using hydrogen-like
wavefunctions, corresponding to the potential (24).18 In practice,
however, it frequently appears reasonable enough to evaluate
bound–free oscillator strengths with the Kramers formula or just to
use available oscillator-strength data precalculated in the distorted-
wave approximation, since the ionization balance is generally not too
sensitive to minor inaccuracies in the oscillator strengths entering
Eq. (23).

The rate of the inverse process, i.e., dielectronic capture, reads

Dm =∑
ji
(gj −Nj)NiAcm

ij θ(εj − εi + εm), (25)

where the relevant partial rate Acm
ij is connected with Amc

ji by the
principle of detailed balance (see Refs. 13 and 33):

Acm
ij = exp[β(μe − εj + εi − εm)]Amc

ji . (26)

Note that Eqs. (14), (15), and (23) contain the free-electron
Pauli blocking factor 1 − n(ε). In principle, it would be appropri-
ate to include a similar factor in the calculation of the collisional
ionization and three-body recombination rates. However, keeping in
mind that free-electron degeneracy effects are generally insignificant

in high-temperature plasmas under strong NLTE conditions, we use
here the simple Lotz formula (10), disregarding the Pauli blocking
factor but enabling us to rapidly evaluate the relevant atomic-process
rates which is crucial for NLTE simulations.

The variation of NLTE one-electron energies in the pro-
cess of iterative solution of Eq. (1) may lead to sudden changes
in the Heaviside function θ(εj − εi + εm) in Eqs. (22) and (25),
thus impeding the convergence of iterations. To improve conver-
gence, we introduce some minor broadening of the two-electron-
process thresholds effectively responsible for statistical averaging
of one-electron energies over all possible electronic configurations
occurring in a plasma. We represent the probability of finding a
free electron coming from the m-subshell autoionization with an
energy ε by a Gaussian function centered at the average energy
⟨ε⟩ = εj − εi + εm:

P(ε) =
1

√
2πΔ

exp[−
1
2
(

ε − ⟨ε⟩
Δ
)

2

]. (27)

The Heaviside function θ(εj − εi + εm) in Eqs. (22) and (25) is then
replaced by the probability that the autoionization process just leads
to the ejection of an electron with positive energy:

∞

∫

0

P(ε) dε =
1
2
[1 + erf(

εj − εi + εm
√

2Δ
)], (28)

where erf(x) = 2∫
x

0 exp(−t2
) dt/
√

π is the error function. As Δ
approaches zero, Eq. (28) becomes θ(εj − εi + εm). In the present
work, rigorous substantiation of the two-electron-process thresh-
old broadening is not performed, and therefore formal expressions
for Δ are not derived. Instead, we use ad hoc values of Δ that are
large enough to ensure convergence of iterations while being small
enough (Δ ≲ 10−2Te) to make the solution of Eq. (1) insensitive to
their specific values.

As the calculation of one-electron energies and atomic-process
rates is generally rather laborious, Eq. (1) is solved by making two
iteration cycles.18 In the internal cycle, one solves the equations for
occupation numbers with certain values of one-electron energies,
rates of atomic processes, and average ion charge by using the
Newton method.36 Note that the convergence of the Newton iter-
ations is both fast and stable, regardless of the local radiation field,
provided that the variation of occupation numbers is constrained by
the obvious condition 0 ⩽ Nm ⩽ gm.

In the lth external iteration, the occupation numbers N̄(l)p
obtained from internal iterations are mixed with those from the
preceding (l − 1)th external iteration (see Refs. 18 and 37):

N(l)p = αN̄(l)p + (1 − α)N(l−1)
p . (29)

In the calculations in the present paper, the mixing parameter α is
set equal to 0.3. This mixing procedure enables us to considerably
improve convergence. Then, the resulting occupation numbers N(l)p
are employed in the external iteration to update the values of
average ion charge (6), chemical potential μe, one-electron energies,
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and process rates. For the latter procedure, two methods have been
implemented. The first (denoted as method I) involves solution of
the SCF equations employing a fixed set of (generally noninteger)
occupation numbers Ns at given values of free-electron tempera-
ture and material density. In the present work, bound electrons are
treated with the relativistic Dirac equation, while free ones are rep-
resented under the nonrelativistic semiclassical approximation. The
corresponding SCF equations thus take the form18,21,38

P′s(r) +
𝜘s

r
Ps(r) =

1
h̵c
[εs − V(r) + 2me c2

]Qs(r), (30)

Q′s(r) −
𝜘s

r
Qs(r) = −

1
h̵c
[εs − V(r)]Ps(r), (31)

V(r) = [Vel(r) + Vxc(ne(r), β) − Vxc(n0
e , β) − ν]θ(r0 − r), (32)

Vel(r) = −
Ze2

r
+ 4πe2

r0

∫

0

(r′)2ne(r′) dr′

r>
, (33)

4πr2ne(r) = 4πr2
[n(1)e (r) + ne, f (r)]θ(r0 − r) + 4πr2n0

e θ(r − r0),
(34)

4πr2n(1)e (r) =∑
s

Ns[P2
s (r) +Q2

s (r)], (35)

ne, f (r) =
√

2 m3/2
e

π2h̵3β3/2

∞

∫

−βV(r)

√y dy
1 + exp{y + β[V(r) − μe]}

, (36)

n0
e = ne, f (r > r0), (37)

ν =
1

ne(r0)
{−n0

e εxc(n0
e , β) − [ne(r0) − n0

e]Vxc(n0
e , β)

+ ne(r0)εxc(ne(r0), β)}, (38)

4π
r0

∫

0

ne(r)r2 dr = Z. (39)

Here, r> = max(r, r′), 𝜘s = (ls − js)(2js + 1), V(r) is the total SCF
potential, and Vxc is the exchange-correlation potential found
from the exchange-correlation Helmholtz free energy per electron
εxc(ne, β) through the relation

Vxc(ne, β) =
∂

∂ne
[neεxc(ne,)]. (40)

The calculations in the present work are carried out with the simple
Kohn–Sham exchange potential Vxc(ne) = Vx(ne) = −e2

(3ne/π)1/3,
which ignores electron correlation effects, which are insignificant at
the high temperatures considered in this paper.

The chemical potential is found from the charge-neutrality
condition (39).

One-electron energies and wavefunctions obtained from
Eqs. (30)–(39) are employed to calculate the oscillator strengths and

rates of atomic processes. Since Eqs. (30)–(39) are nonlinear, their
solution uses an iterative procedure. In doing this, the potential
V(r) is updated in each iteration with the generalized Anderson
method,37,39 enabling one to strongly accelerate convergence. The
system of Dirac Eqs. (30) and (31) is solved with the phase method,18

which ensures very rapid convergence of iterations for one-electron
energies. However, the solution of Eqs. (30)–(39) in every external
iteration for Eq. (1) is still very time-consuming. We have there-
fore developed a second, simplified, perturbation-theory approach
referred to as method II. In this method, the SCF Eqs. (30)–(39)
are solved only once in the LTE approximation, which assumes
that Fermi–Dirac statistics (16) hold: Ns = Ñs = gs n(εs). The results
of these LTE calculations are then employed for an approximate
evaluation of one-electron energies and atomic-process rates cor-
responding to the NLTE occupation numbers in the following
way.

From Eqs. (30)–(35), one readily finds the relation

εs ws = (⟨s⟩ − ν)ws + e2
∑

t
Nt F(0)st + ΔIs + Δεxc

s , (41)

where

ws =

r0

∫

0

ρs(r) dr, with ρs(r) = P2
s (r) +Q2

s (r), (42)

ΔIs = 4πe2
r0

∫

0

ρs(r) dr
r0

∫

0

ne, f (r′)(r′)2

r>
dr′, (43)

Δεxc
s =

r0

∫

0

[Vxc(ne(r), β) − Vxc(n0
e , β)]ρs(r) dr, (44)

F(0)st is the zero-rank direct Slater integral:

F(0)st =

r0

∫

0

ρs(r) dr
r0

∫

0

ρt(r′)
r>

dr′, (45)

and ⟨s⟩ stands for the sum of the kinetic energy of an electron at
subshell s and the potential energy of its interaction with the central
nucleus (see, e.g., Ref. 40).

At relatively low material densities, where NLTE effects are
expected to be important, one can safely assume that bound-electron
wavefunctions are localized inside the atomic cell of radius r0, and
therefore ws ≈ 1 and ν ≈ 0. We then note that small variations of the
occupation numbers entail only slight alterations of the wavefunc-
tions given by the solution of Eqs. (30)–(39). Keeping in mind also
that the exchange-correlation contribution (44) to the one-electron
energy is generally small compared with the kinetic and electro-
static energy contributions and that the alteration of the potential
Vxc(ne(r), β) in Eq. (44) due to the variation of the occupation num-
bers is partially counterbalanced by the corresponding alteration of
the term Vxc(n0

e , β), we can represent the energy (41) as

εs = ε(0)s + e2
∑

t
Nt F(0)st + ΔIs, (46)

with the term ε(0)s and the Slater integrals F(0)st being weakly
dependent on the occupation numbers.
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The quantity ΔIs (43) represents the lowering of the ioniza-
tion potential for an ion at finite material density compared with an
isolated ion with the same occupation numbers of electron subshells.
To estimate ΔIs, we assume that the free-electron density is nearly
uniform (as is the case in high-temperature plasmas where NLTE
effects may be important). This leads to the following well-known
expression for the high-temperature limit of the ionization potential
depression (IPD) in the ion-sphere model:41

ΔIs =
3Z0e2

2r0
(1 −

⟨r2
⟩s

3r2
0
) =

3e2

2r0
(Z −∑

t
Nt)(1 −

⟨r2
⟩s

3r2
0
), (47)

where ⟨r2
⟩s is the mean square radius for subshell s:

⟨r2
⟩s =

r0

∫

0

r2ρs(r) dr, (48)

which may be estimated in the nonrelativistic hydrogen-like approx-
imation34 as

⟨r2
⟩s =

h̵4n2
s [5n2

s + 1 − 3ls(ls + 1)]
2m2

e e4Z2
s

. (49)

Taking Eqs. (46) and (47) into account, one gets for the NLTE
one-electron energy

εs ≅ ε̃s + e2
∑

t
(Nt − Ñt)

⎡
⎢
⎢
⎢
⎢
⎣

F̃(0)st −
3

2r0

⎛

⎝
1 −

˜
⟨r2
⟩s

3r2
0

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

, (50)

where Ñt , ε̃s, F̃(0)st , and ˜
⟨r2
⟩s are the LTE occupation numbers,

one-electron energies, Slater integrals, and mean square radii,
respectively.

The version of method II in which the NLTE one-electron
energies are approximated by Eq. (50) is hereinafter denoted as
method IIa. To implement this method, for every given pair of the
free-electron temperature and material density values (Te, ρ), one
should precalculate all the needed LTE data: the chemical potential,
one-electron energies, direct Slater integrals, and radial integrals
rst necessary for obtaining the dipole-transition oscillator strengths
f st ∝ εst r2

st [see Eqs. (17) and (18)]. However, these pairs (Te, ρ) can
hardly be predetermined when the NLTE rate equations are solved
step-by-step together with the radiation-hydrodynamics equations.
To overcome this difficulty, one has to find a way to solve the rate
equations at arbitrary values of Te and ρ on the basis of some precal-
culated atomic data. This may be done at least in two ways. First, one
can precalculate the LTE atomic data on some temperature–density
grid and then evaluate the relevant quantities at intermediate values
of Te and ρ (at which the NLTE rate equations are actually solved)
by using an interpolation procedure. Alternatively, one can replace
both the LTE and NLTE average-atom quantities by the relevant
isolated-ion data corresponding to the average-atom total number
of bound electrons Q with the corrections for density effects added,

as required. The latter isolated-ion data are obtained by interpolating
between the atomic data precalculated for isolated ions with nearby
integer Qs. The first approach is employed for the free-electron
chemical potential, which is indeterminate for isolated ions, and for
one-electron energies, which may appear to be noticeably different
from their isolated-ion counterparts. This difference is due to the
strong dependence of one-electron energies on occupation numbers
(and not just on the total number of bound electrons), to den-
sity effects (bound–free electron interaction in the average atom),
and to the distinction between the average-atom and isolated-ion
electron exchange potentials. The second approach is appropriate
for use in the calculation of Slater integrals and (radial) integrals
of bound–bound and bound–free transitions, since these are only
implicitly dependent on the occupation numbers and are therefore
less sensitive to the detailed subshell distribution of bound electrons,
to density effects, and to the treatment of the exchange interac-
tion compared with one-electron energies. Besides, precalculated
isolated-ion data on the Slater and transition integrals require much
less capacity memory storage than the same average-atom data do,
since the number of potentially abundant isolated-ion species with
various Qs never exceeds a few tens at most, while the number
of temperature–density grid nodes necessary for running an accu-
rate interpolation procedure is usually about one or two orders of
magnitude larger.

In the present work, isolated-ion data on the Slater and
bound–bound transition integrals are precalculated with the FAC
code,42 while the data on the bound–free transition integrals (18) are
generated in the distorted-wave approximation similarly to what it is
done in the RESEOS code using the SCF potential found for the basic
configurations43 of various ion species. So, for each specific isolated
ion, there is only one relatively modest dataset of the precalculated
Slater and transition integrals.

In addition to the reduction in the capacity memory storage
needed, the use of the isolated-ion atomic data also enables one
to allow for orbital relaxation effects (understood here as the
distinctions between one-electron wavefunctions found for various
distributions of the subshell occupation numbers occurring at a
specific pair of Te and ρ) without invoking the rather cumbersome
method I. These effects may appear to be important in the case
of strong departures from LTE conditions invalidating the basic
assumption employed in method IIa that the NLTE wavefunc-
tions are fairly close to their LTE counterparts. The inclusion of
orbital relaxation effects results in modifications both of the NLTE
one-electron energies and of the transition integrals. To allow for
these effects, the transition integrals are evaluated for the NLTE
number of bound electrons Q (rather than for the relevant LTE value
Q̃) by interpolating between the transition integrals for isolated ions
with nearby integer Qs.

As method IIa keeps the NLTE one-electron energies unaf-
fected by orbital relaxation effects, we propose a method to allow for
the relevant one-electron energy changes with the following proce-
dure (method IIb). In evaluating one-electron energies, a changeover
from the LTE configuration with occupation numbers Ñt to the
NLTE configuration with occupation numbers Nt is carried out in
several steps so that the total number of bound electrons in inter-
mediate steps runs over all integer values between the numbers
Q̃ = ∑tÑt and Q = ∑tNt . Intermediate configurations are gener-
ated by successively filling subshells in order of increasing LTE
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subshell one-electron energies. At every step, one-electron energies
are recalculated using an expression similar to Eq. (50) that involves
one-electron energies from the preceding (l − 1)th step along with
the occupation numbers, the Slater integrals, and mean square radii
from the preceding and running steps:

ε(l)s = ε(l−1)
s + e2

∑
t
(N(l)t −N(l−1)

t ){
1
2
(F(0,l−1)

st + F(0,l)
st )

−
3

2r0
[1 −

1
6r2

0
(⟨r2
⟩
(l−1)
s + ⟨r2

⟩
(l)
s )]}. (51)

Here, the average of the Slater integrals and mean square radii from
the preceding and running steps is employed to more accurately
approximate the derivative

∂εs

∂Nt
≈ e2
[F(0)st −

3
2r0
(1 −

⟨r2
⟩s

3r2
0
)].

Estimations based on Eq. (49) show that under the conditions
considered in the present paper, the correction

⟨r2
⟩s/(3r2

0) (52)

is almost negligible. Therefore, we have omitted this correction in
the present calculations, i.e., we have set ⟨r2

⟩s = 0 in Eqs. (50) and
(51), although in the general case accounting for the correction (52)
is straightforward.

We note that there are a number of analytical approximations
for the ion-sphere IPD41,44–50 that are more accurate than Eq. (47)
because they account not only for the correction (52) due to finite
ion size but also for the corrections due to plasma nonideality effects
expressible in terms of the electron–ion coupling parameter. The
inclusion of these corrections as well as the finite-ion-size correc-
tion (52) may be important for calculating optical properties with
spectroscopic precision.49 However, as the model presented here
is generally not intended for very precise calculation of optical
properties, we leave the analysis and implementation of these
corrections for future research. Here, we just note that for the cases
considered in the present paper a more accurate description of the
IPD term in Eqs. (50) and (51) is not expected to be essential. This is
demonstrated below in Fig. 3, where it can be seen that average ion
charges calculated with and without accounting for the IPD term in
Eq. (51) are quite close to each other.

Figure 1 presents the ratios of one-electron energies of the
subshells with principal quantum numbers n = 1, . . . , 8 as calcu-
lated using methods I and II for basic configurations of Q-electron
ions occurring in a gold plasma at Te = 1 keV, ρ = 0.1 g/cm3,
and various departures from LTE. One can see that method IIa
provides fairly good results at moderate departures from LTE and
that most of the one-electron energies calculated by this method
with Eq. (50) are systematically overestimated (underestimated in
absolute values) compared with the SCF calculations of method I.
At strong departures from LTE, the inaccuracies in one-electron
energies calculated by method IIa for the outer subshells may be as
much as 20%, although they are quite moderate compared with the

FIG. 1. Ratios of one-electron energies of subshells with principal quantum num-
bers n = 1, . . . , 8 as calculated using methods I and IIa/IIb for basic configurations
of Q-electron ions occurring in a gold plasma at Te = 1 keV, ρ = 0.1 g/cm3, and
various departures from LTE. The vertical dashed line indicates the relevant LTE
value Q̃ = 12.66.

near factor-of-two deviations from the relevant LTE data. Inclusion
of the NLTE one-electron energy changes due to orbital relaxation
effects (method IIb) essentially improves the results: the maximum
deviation from the one-electron energies given by method I drops
below 4%.

To calculate the atomic-process rates for a given set of occu-
pation numbers, one also needs to obtain the value of the free-
electron chemical potential. As method II provides a solution of
Eqs. (30)–(39) only in the LTE approximation, one cannot obtain the
NLTE chemical potential directly from Eq. (39), since this requires
knowledge of the NLTE SCF potential V(r). The NLTE effects are,
however, most pronounced in a weakly coupled plasmas, for which
the chemical potential may be evaluated with fairly good accuracy
using the approximation V(r) ≡ 0, ws = 1:

√
2 m3/2

e

π2h̵3β3/2n0
i

I1/2(βμ′e) = Z −∑
s

Ns, (53)
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where

Ik(x) =
∞

∫

0

yk dy
1 + exp(y − x)

is the Fermi–Dirac integral.
To accurately provide the LTE limit, we introduce a correction

to the chemical potential μ′e evaluated with Eq. (53):

μe = μ′e + Δμe, (54)

Δμe = μ̃e − μ̃′e, (55)

and
√

2 m3/2
e

π2h̵3β3/2n0
i

I1/2(βμ̃′e) = Z −∑
s

Ñs. (56)

The correction Δμe is defined to be independent of the occupation
numbers: It is found only once in the LTE case and then employed
for arbitrary NLTE occupation numbers.

The simplified approach presented here (method II) enables
one to generate one-electron energies and rates of atomic processes
at low computational cost and provides the capability to perform
large-scale modeling of radiation transfer including NLTE effects
with no need for extensive atomic datasets. In this context, it is
important to note that in method II, one-electron energies exhibit
a simple explicit dependence on occupation numbers. This allows
one to solve Eq. (1) running only 1 Newton iteration cycle rather
than the two cycles described above, thus considerably simplifying
the implementation of method II in radiation-hydrodynamics codes.
The applicability of this method, however, depends on there being
only relatively small departures from LTE conditions, and therefore
it should be carefully tested against the more consistent (and more
time-consuming) method I. Appropriate test cases are considered in
Sec. III.

III. CALCULATIONS OF AVERAGE ION CHARGE
AND IONIZATION BALANCE OF THE NLTE PLASMAS

In Figs. 2–8, we compare average ion charge isotherms
for strongly nonequilibrium plasmas of gold calculated with the
RESEOS and THERMOS codes at a number of free-electron and
blackbody radiation temperatures with experimental data obtained
at the OMEGA and NOVA laser facilities.26,27 Experimental charge
state distributions and corresponding values of Z0 are inferred from
measurements of plasma emission spectra, density, and free-electron
temperature using collisional–radiative modeling at the highest
possible level of detail. A blackbody radiation temperature Tr = 0
corresponds to zero radiation energy density: The experiments in
Refs. 26 and 27 were dedicated to studies of optically thin plasmas of
gold, the thermal radiation of which can be neglected in the absence
of an external radiation source. Some measurements in Ref. 26 were,
however, performed for gold targets also heated by external radia-
tion with an effective blackbody temperature Tr = 185 eV reemitted
from laser-driven tungsten hohlraum walls.

FIG. 2. Average ion charge isotherms for gold at Te = 0.8 keV and T r = 185 eV
calculated using the RESEOS code in various approximations (methods I, IIa,
and IIb) and the THERMOS code with (lower curves) and without (upper curves)
account being taken of two-electron processes (autoionization and dielectronic
capture), compared with the experimental values from Ref. 26 (brown symbols).

For the cases presented in Figs. 2–8 the convergence of
iterations in RESEOS calculations was stable. The converged average
ion charges (with residual <10−6) were obtained after ≈30 external
iterations (described above) in the calculations ignoring two-
electron processes (autoionization and dielectronic capture) and
after ∼30–100 iterations when two-electron processes were taken
into account. In the latter case, taking account of the broadening
of two-electron-process thresholds as described in Sec. II. played a
crucial role in providing stable convergence.

THERMOS calculations were performed using the detailed
configuration accounting approach with average configuration

FIG. 3. Average ion charge isotherms for gold at Te = 1.4 keV and T r = 0 cal-
culated using the RESEOS code in various approximations [methods I, IIa, IIb,
and IIb without the IPD term in Eq. (51)] and the THERMOS code with (lower
curves) and without (upper curves) account being taken of two-electron processes
(autoionization and dielectronic capture), compared with the experimental values
from Ref. 26 (brown symbols).
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FIG. 4. Average ion charge isotherms for gold at Te = 1.4 keV and T r = 185 eV.
The colors, lines, and symbols have the same meanings as in Fig. 2.

FIG. 5. Average ion charge isotherms for gold at Te = 2 keV and T r = 0. The
colors, lines, and symbols have the same meanings as in Fig. 2.

FIG. 6. Average ion charge isotherms for gold at Te = 2 keV, T r = 185 eV. The
colors, lines, and symbols have the same meanings as in Fig. 2.

FIG. 7. Average ion charge isotherms for gold at Te = 1.7 keV, T r = 0. The colors,
lines, and symbols have the same meanings as in Fig. 2.

energies and configuration-to-configuration transition rates of
isolated ions precalculated using the FAC code.42 Plasma den-
sity effects were taken into account using the Stewart–Pyatt
approximation.51 The set of electronic configurations involved in
the THERMOS calculations for the ions with 26 ⩽ Q ⩽ 38 bound
electrons was taken from Ref. 26 and supplemented by additional
configurations with 15 and 16 electrons in the M shell (the calcu-
lations of Ref. 26 for Q ⩾ 30 were restricted to configurations with
17 and 18 electrons in the M shell). Such an extended configuration
set enables one to accurately represent the ionization balance of a
gold plasma under experimental conditions, but may be insufficient
at higher material densities when the charge state distribution is
becoming broader. In particular, no excited configurations with
more than one electron occupying the electron shells with principal
quantum numbers n ⩾ 5 were involved in the calculations of
Ref. 26, although the RESEOS calculations predict that the
average number of bound electrons with n ⩾ 5, ⟨Q⟩n⩾5,
may reach several unities at ρ ≳ 0.1–1 g/cm3. As a detailed

FIG. 8. Average ion charge isotherms for gold at Te = 2.4 keV, T r = 0. The colors,
lines, and symbols have the same meanings as in Fig. 2.
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accounting for all the necessary excited configurations in such
situations may be very time-consuming, we have not included these
configurations in the THERMOS calculations and have restricted
the THERMOS results in Figs. 2–8 to the density ranges in which
RESEOS yields ⟨Q⟩n⩾5 < 1. Also, at low densities, the THERMOS
curves are truncated when the contribution of ions with Q > 38 to
the total charge state distribution in the RESEOS calculations [see
Eqs. (58), (60), and (61) below] becomes non-negligible, since the
THERMOS dataset for these ions is not as complete as for ions with
26 ⩽ Q ⩽ 38.

To generate datasets of bound–free oscillator strengths,
RESEOS generally employs the distorted-wave approximation or the
Kramers formula (19). For this purpose, however, THERMOS, uses
either the alternative representation of the Kramers formula (20) or
an analytic expression18 derived by substituting the hydrogen-like
wavefunctions into the nonrelativistic counterpart of Eq. (17): The
former is used to calculate photoionization and photorecombination
rates and the latter to calculate two-electron process rates.52 There-
fore, to make the comparisons more straightforward, the RESEOS
calculations presented in Figs. 2–8 were done using bound–free
oscillator strengths obtained with Eq. (20). In this connection, we
note that this equation is more sensitive to potential inaccura-
cies of the subshell one-electron energies εm than Eq. (19), owing
to the explicit dependence of its numerator on εm. Therefore, the
use of the alternative representation of the Kramers formula (20)
instead of Eq. (19) generally increases the disagreement between
the RESEOS results obtained with methods I and IIb and those
found using method IIa, with its more crude approximation of
the NLTE subshell one-electron energies. This effect becomes more
pronounced when two-electron processes are ignored, since the
bound–free transitions strongly affect the ionization balance in this
case.1,8,53

In deciding between the two alternative versions of method
II, one can see from Figs. 2–8 that preference should be given to
method IIb since it provides better agreement with the more accu-
rate SCF calculations performed using method I. However, for the
cases considered, the results provided by method IIa may be con-
sidered acceptable for approximate estimations of NLTE effects if
the relevant strong departures from LTE are kept in mind: at low
densities, the NLTE values of Z0 differ from the LTE ones by more
than 20, while the inaccuracies in Z0 generated by the use of the
method IIa do not exceed a few unities. As the departure from
LTE becomes smaller (e.g., when the material density increases
and/or the radiation field approaches a Planckian one), and so the
differences between the NLTE and LTE one-electron wavefunctions
become less, the accuracy of method IIa generally improves, to the
extent of being acceptable for integrated simulations, i.e., radiation-
hydrodynamics simulations that calculate NLTE material properties
in-line.15

In general, the results obtained with the RESEOS (by methods
I and IIb) and THERMOS codes agree reasonably well with
each other, although the models implemented in the codes are
significantly different: The average-atom model in RESEOS and
detailed configuration accounting in THERMOS. The best agree-
ment between RESEOS and THERMOS is demonstrated by the
calculations ignoring two-electron processes. The agreement
becomes somewhat poorer as these processes are included, especially
at low densities (ρ ≲ 10−3 g/cm3) and Tr = 0. The figures show that

in such situations, THERMOS provides smoother dependences
Z0(ρ) than RESEOS does. This may be explained by a profound
effect of the bound-state energy spectrum on the ionization balance
calculated taking account of two-electron processes. The changes
in material density (and temperature) lead to modifications of the
energy spectrum that generate well-pronounced oscillations of the
Z0(ρ) curves in the RESEOS average-atom picture and the smoothed
ones in the THERMOS calculations, since the latter use an averaging
over all abundant configurations.

Since the temperature of the external blackbody radiation in
the cases considered, Tr = 185 eV, is small compared with the free-
electron temperature Te, this radiation directly affects only the
populations of excited states. However, one can see from Figs. 3–6
that blackbody radiation with Tr < (≪)Te can cause substantial
growth of the average ionization when two-electron processes are
included (see Ref. 53). This is due to the enhanced role of autoion-
ization, the rate of which depends strongly on the populations of
excited states.

It can also be seen that in the presence of the external radi-
ation considered here, the agreement between the RESEOS and
THERMOS results gets better. This may be explained by the fact
that the radiation drives the NLTE subshell distribution of bound
electrons closer to that occurring under LTE conditions.

One can see from Figs. 2–8 that RESEOS somewhat over-
estimates the relative influence of two-electron processes on the
ionization balance compared with THERMOS. The reason of this
may be twofold. On the one hand, incomplete accounting for
two-electron processes may have an effect: as mentioned above,
the change in the m-subshell occupation number induced by
two-electron transitions like ( j→ c, m→ i) and (i→ c, j→ m) as
well as their inverse counterparts is not included in the present
model. On the other hand, one should keep in mind that the equa-
tions of the average-atom collisional-radiative model are derived
under the assumption of large degeneracies and occupation numbers
of electron subshells:12,13

Nm ≫ 1, gm −Nm ≫ 1. (57)

For two-electron processes, such an approximation may lead to a
larger accumulated error than in the case of one-electron processes,
since the rates of two-electron processes contain the product of three
terms like Nm or gm −Nm rather than one or two such terms in the
rates of one-electron processes.

As one can observe from the figures, the RESEOS average
ion charges calculated by method I with account taken of two-
electron processes are systematically underestimated with respect
to the experimental values by 1–2. THERMOS generally pro-
vides somewhat better agreement with experiment, although a
modest underestimation of the calculated Z0 data still persists at
Te = 0.8 keV and Te ⩾ 1.7 keV. On the one hand, this may be
partially due to experimental uncertainties in the measurements
of electron temperature. On the other hand, both RESEOS and
THERMOS currently employ the dipole approximation for the rates
of one-electron collisional and two-electron atomic processes, which
may not be quite sufficient in some instances. For example, it was
shown that more accurate description of the atomic-process rates
can have a considerable effect on the calculated ionization balance
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of gold at a temperature of a few keV.54,55 Therefore, to eliminate
(or at least reduce) the remaining disagreement of the THERMOS
and RESEOS results with experimental data, one probably needs to
provide a more accurate description of the atomic-process rates. In
principle, the implementation of the distorted-wave approximation
or just the simpler plane-wave Born approximation (for collisional
excitation/deexcitation rates)29,50 instead of the dipole approxima-
tion may have an effect. Here, as a first step in improving the
atomic-process rates, we check for the effect of using the bound–free
oscillator strengths of isolated ions calculated in the distorted-wave
approximation (17) rather than using the Kramers formula (20)
or (19). In RESEOS, this option is available in the context of method
IIb. However, as one can see from Fig. 9, the employment of more
appropriate bound–free oscillator strengths has only a slight effect
on the values of Z0, allowing for two-electron processes, and is there-
fore insufficient to provide better agreement with experimental data.
Further improvement of the atomic-process rates will be the object
of future work.

Average-atom calculations can also be employed to represent
the charge state distribution in both the LTE and NLTE regimes.
This may be done by using, for example, the method of Refs. 12
and 13, allowing for correlations (or interdependence) of the sub-
shell occupation numbers and requiring the solution of additional
equations for the electron covariance matrix. These equations are
derived under the assumption (57). We do not employ this assump-
tion here, but, at the same time, we restrict our consideration to the
case of the binomial distribution for uncorrelated occupation num-
bers (where the covariance matrix is diagonal) which is valid in the
high-temperature regime:

PC =∏
s

⎛
⎜
⎝

gs

qs

⎞
⎟
⎠
(

Ns

gs
)

qs

(1 −
Ns

gs
)

gs−qs

, (58)

FIG. 9. Average ion charge isotherms for gold at Te = 2 keV and T r = 0 cal-
culated using RESEOS by method IIb with (lower curves) and without (upper
curves) account being taken of two-electron processes using bound–free oscil-
lator strengths given by Eq. (20) (red curves), (19) (green curves), and (17)
(blue curves), compared with the experimental values from Ref. 26 (brown
symbols).

where
⎛

⎝

g
q

⎞

⎠
=

g!
q!(g−q)! , and PC is the relative population of elec-

tron configuration C with subshell occupation numbers {qs} and
degeneracies {gs}. Under LTE conditions, the distribution (58) is
equivalent to the well-known Gibbs distribution with zeroth-order
configuration energies E(0)C = ∑sqsεs:

PC =
UC

∑C′UC′
, UC =∏

s

⎛
⎜
⎝

gs

qs

⎞
⎟
⎠

exp[βqs(μe − εs)]. (59)

It is evident that in the NLTE case, one can also rewrite Eq. (58)
in the form (59), provided the actual one-electron energies εs are
replaced by their effective counterparts ξs that reproduce the correct
average NLTE occupation numbers after the formal substitution of
ξs into the Fermi–Dirac distribution:

Ns = gs n(ξs)⇒ ξs = −Te ln(
Ns

gs −Ns
) + μe. (60)

After that, the evaluation of the relative populations of ion species

cQ = ∑
∑

s
qs=Q

PC (61)

takes advantage of the efficient partition-function algebra originally
developed for LTE conditions.56

Figures 10 and 11 present comparisons of charge state dis-
tributions of NLTE gold plasmas calculated using the RESEOS

FIG. 10. Charge state distribution of gold at Te = 1.4 keV and T r = 185 eV cal-
culated using the RESEOS code with method IIb and the distorted-wave approx-
imation for the bound–free oscillator strengths (red curve, Z0 = 47.17) and using
the THERMOS code (blue curve, Z0 = 47.24), compared with the experimental
data of Ref. 26 (brown symbols, Z0 = 47.9 ± 1.4). The calculations were carried
out with account taken of two-electron processes for the experimental values
of material density ρ = 6.8 × 10−3 g/cm3 (RESEOS) and free-electron density
Z0 n0

i = 1021 cm−3 (THERMOS).
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FIG. 11. Same as Fig. 10 for Te = 2.4 keV, T r = 0, ρ = 4 × 10−3 g/cm3, and
Z0 n0

i = 6 × 1020 cm−3. The corresponding average ion charges are ZRESEOS
0

= 48.27, ZTHERMOS
0 = 48.81, and Zexp

0 = 49.5 ± 0.5.

and THERMOS codes with the experimental data from Ref. 26.
Compared with RESEOS, THERMOS employs a more rigor-
ous approach in which the charge state distribution is obtained
directly from the solution of the configuration-to-configuration rate
equations. However, RESEOS provides reasonable (although not
excellent) agreement both with the THERMOS calculations and with
experimental data.

The average-ion charges calculated using RESEOS and (to a
lesser extent) those calculated using THERMOS are underestimated
by about 1–2 compared with the experimental values, which is
of the same order or even less than the typical spread of average
ion charges provided by state-of-the-art collisional–radiative
models under similar conditions.55,57 However, one may be
concerned that such an underestimation could lead to rather
large inaccuracies in the calculated optical properties, since these
can be very sensitive to ionization balance in certain spectral
ranges. Specifically, this may happen when a modest change in
the average ion charge leads to substantial relative changes in the
occupation numbers of some electron shells. To check whether
the inaccuracies in the optical properties calculated using RESEOS
and THERMOS in such situations are in fact not so high, we
compared the RESEOS and THERMOS emission spectra for the
conditions of Figs. 10 and 11 with the experimental data:26 see
Figs. 12 and 13. The THERMOS emission spectra were obtained
using detailed configuration accounting, while RESEOS employed
the binomial distribution (58) along with the superconfiguration
approach.2,19,23 One can see that both THERMOS and RESEOS
provide at least qualitative agreement with the experimental data
(the differences in the emission spectra reflect the corresponding
differences in charge state distributions). This result illustrates
the ability of RESEOS to represent high-temperature NLTE
optical properties with reasonable accuracy (acceptable for
integrated NLTE simulations in a number of studies) and reason-
ably low computational cost—note that the superconfiguration
approach is much less time-consuming than detailed configuration
accounting.

FIG. 12. Emission intensity of gold for the conditions of Fig. 10. The experimental
data26 are in brown, and the THERMOS and RESEOS results are in blue and
red, respectively. Note that the diagnostic lines of potassium are absent from the
calculated THERMOS and RESEOS spectra.

FIG. 13. Emission intensity of gold for the conditions of Fig. 11. The experimental
data26 are in brown, and the THERMOS and RESEOS results are in blue and
red, respectively. Note that the diagnostic lines of potassium are absent from the
calculated THERMOS and RESEOS spectra.

IV. THERMODYNAMIC FUNCTIONS OF NLTE PLASMAS
At modest departures from LTE conditions, hydrodynamic

modeling may be carried out just using the LTE equation of state
(EOS). Generally, however, one needs to calculate the internal
energy E(ρ, Te, N) and pressure P(ρ, Te, N) for an arbitrary NLTE
state of matter characterized by some values of material density ρ
and free-electron temperature Te and a set of subshell occupation
numbers N. In the context of method I, this calculation is rather
straightforward: the difference with the LTE case lies only in the
occupation numbers being given by the rate equations rather than
by the Fermi–Dirac statistics. Here, we restrict our consideration to
evaluation of the electron components of the internal energy Ee and
pressure Pe, since the most pronounced NLTE effects are generally
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encountered in weakly or moderately coupled plasmas, allowing one
to represent the relevant ion counterparts well using a simple ideal-
gas approximation. In addition, the explicit temperature dependence
of the exchange-correlation potential is ignored in the following
discussion for simplicity.

In the context of method I, the electron internal energy (per
atom) may be written as follows:

Ee = Ek + Ep + Exc − E0, (62)

Ek = Ek1 + Ek2 + Ek3, (63)

Ek1 =∑
s

Nsεsws, (64)

Ek2 = −4π
r0

∫

0

n(1)e (r)V(r)r
2 dr, (65)

Ek3 =
4
√

2 m3/2
e

πh̵3β5/2

r0

∫

0

r2 dr
∞

∫

−βV(r)

y3/2 dy
1 + exp{y + β[V(r) − μe]}

, (66)

Ep = −2π
r0

∫

0

[
Ze2

r
− Vel(r)]ne(r)r2 dr, (67)

Exc = 4π
r0

∫

0

ne(r)εxc(ne(r))r2 dr. (68)

Here, E0 is the reference energy value set to provide Ee = 0 under
normal conditions.

The electron pressure can be found using the relativistic
virial theorem (see Ref. 58) or, equivalently, from the relativistic
stress–tensor formula,59 thus yielding

Pe = Pb + P f + Pxc(ne(r0)), (69)

Pb =
h̵c

4πr2
0
∑

s
Ns[Qs(r0)P′s(r0) − Ps(r0)Q′s(r0)], (70)

P f =
2
√

2 m3/2
e

3π2h̵3β5/2

∞

∫

−βV(r0)

y3/2 dy
1 + exp{y + β[V(r0) − μe]}

, (71)

Pxc(ne) = n2
e
∂εxc(ne)

∂ne
. (72)

Direct use of Eqs. (62)–(72) in method II is unfeasible, and hence
some simplifications are necessary. First, one can assume again that
the bound-state wavefunctions are localized inside the atomic cell
and therefore ws = 1, Ps(r0) = Qs(r0) = 0, and ne(r0) = n0

e [recall the
discussion just before Eq. (46)]. Second, in evaluating the internal
energy, one may also disregard the nonuniformity of the free-
electron density, i.e., assume that free electrons are distributed
over the whole space with uniform density Z0n(0)i . Following this
assumption, the free-electron kinetic energy (66) should be evalu-
ated with V(r) ≡ 0 and the chemical potential μ′e also obtained using

the approximation V(r) ≡ 0, i.e., from Eq. (53). Then, in calculat-
ing the bound–free electron interaction terms of the internal energy,
we assume that the bound-electron wavefunctions are localized at
distances much smaller than the atomic-cell radius r0. Under this
assumption, one can set

P2
s (r) +Q2

s (r) ≈ δ(r), (73)

where δ(r) is the Dirac delta function. The approximation (73)
is, however, not employed for the interactions of bound electrons
with each other or with the central nucleus. Finally, the exchange-
correlation energy is eliminated from consideration in method II
for simplicity. The above approximations lead to the following
expressions for the energy and pressure:

Ee =∑
s

Ns(εs −
3Z0e2

2r0
) −

e2

2∑s,t
NsNtF(0)st −

9Z2
0e2

10r0

+
4
√

2 m3/2
e r3

0

3πh̵3β5/2 I3/2(βμ′e) − E0, (74)

Pe =
2
√

2 m3/2
e

3π2h̵3β5/2 I3/2(βμe) + (n0
e)

2 ∂εxc(n0
e)

∂n0
e

. (75)

The first two terms in Eq. (74) represent the kinetic energy of bound
electrons and the potential energy of their interaction with each
other and with the central nucleus, the third term is responsible
for the potential energy of the free–free electron interaction and the
interaction of free electrons with the point-like ion with charge Z0,
and the fourth term is the kinetic energy of the uniform free-electron
gas.

Figures 14 and 15 present comparisons of the internal energies
of gold plasmas at zero radiation energy density (Tr = 0) obtained

FIG. 14. Ratios of specific electron internal energy to free-electron temperature for
gold at ρ = 10−2 g/cm3 calculated in the LTE approximation (dashed curves) and
without the use of the LTE approximation at T r = 0 (solid curves). Blue, orange,
and green curves represent the calculations using method I with Eqs. (62)–(68),
method I with Eq. (74), and method IIa with Eq. (74), respectively. Two-electron
processes are ignored.
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FIG. 15. Same as Fig. 14 at Te = 1 keV.

using both Eqs. (62)–(68) and (74). For Eq. (74), we employed one-
electron energies and Slater integrals found both with method I
[from the solution of the SCF Eqs. (30)–(39)] and method II [i.e.,
the NLTE one-electron energies as calculated using either Eq. (50)
or Eq. (51) and isolated-ion Slater integrals for the LTE numbers
of bound electrons]. The use of Eq. (74) in the context of method
II enables one to rapidly evaluate thermodynamic functions, while
the calculations with method I provide just a direct validity check of
Eq. (74) by eliminating the effects due to minor inaccuracies in the
one-electron energies and Slater integrals utilized in method II. One
can see from Figs. 14 and 15 that Eq. (74) is valid at sufficiently high
temperatures (Te ≳ 0.1–1 keV), while at lower temperatures, the
approximations employed to arrive at Eq. (74) lead to an essential
distinction from the results obtained with the basic Eqs. (62)–(68).

FIG. 16. Ratios of specific electron internal energy to free-electron tempera-
ture for gold at ρ = 10−2 g/cm3 as calculated in the LTE approximation (cyan
solid curve) and without the use of the LTE approximation at T r = 0. The LTE
energy is obtained using method I with Eqs. (62)–(68), while the departure of
the NLTE energy from its LTE counterpart is evaluated using method I with the
same Eqs. (62)–(68) (blue solid curve) or with Eq. (74) (orange dashed curve),
or using method IIa/IIb with Eq. (74) (green solid/red dashed curve). Two-electron
processes are ignored.

FIG. 17. Same as Fig. 16 at Te = 1 keV.

However, one can significantly improve the low-temperature results
by taking advantage of the EOS data precalculated in the LTE
approximation and using Eq. (74) just to evaluate the departure of
the internal energy from the relevant LTE value rather than the
total internal energy itself. In doing so, one adds the difference of
NLTE and LTE energies calculated by Eq. (74) to the LTE energy
given by the precalculated EOS data [generated, for example, using
Eqs. (62)–(68) for the LTE case]. As one can see from Figs. 16 and 17,
the adoption of this approach in the context of method I pro-
vides good agreement with the results of the SCF calculations using
Eqs. (62)–(68). In the context of method II, the inaccuracy of the
NLTE internal energy appears to be somewhat larger (owing to
minor inaccuracies in the average ion charges and the approximate
evaluation of one-electron energies and Slater integrals), although it
remains much smaller than the difference between the NLTE and
LTE internal energies.

FIG. 18. Ratios of electron pressure to the product of the free-electron temper-
ature and the material density for gold at ρ = 10−2 g/cm3 as calculated in the
LTE approximation (upper curves) and without the use of the LTE approximation
at T r = 0 (lower curves) using method I with Eqs. (69)–(72) (blue solid curves)
and method IIa with Eq. (75) (green dashed curves). Two-electron processes are
ignored.
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FIG. 19. Same as in Fig. 18 at Te = 1 keV.

One can see from Figs. 18 and 19 that for the cases considered
here, the pressure values obtained with the basic Eqs. (69)–(72) and
the simplified Eq. (75) are fairly close. However, in the general case,
it is appropriate to employ Eq. (75) just to evaluate the difference
between the NLTE and LTE pressures, with the LTE pressure term
being given by the precalculated EOS data. The reason is that at low
temperatures and high material densities (not addressed in Figs. 18
and 19), Eq. (75) may not be accurate enough [and nor may the
simplified Eq. (74) for the internal energy]. At the same time, under
such conditions, the departure from LTE is generally small, and
therefore the use of the simplified equation to evaluate the departure
of pressure (or internal energy) from LTE values does not provide
considerable errors of the total pressure (or internal energy).

Thus, we have proposed an efficient method to calculate the
electron thermodynamic functions of NLTE plasmas involving the
use of their LTE counterparts from the precalculated EOS data and
the evaluation of departures from the LTE values with the simple
Eqs. (74) and (75).

V. CONCLUSION
We have proposed and validated a simplified version of the

NLTE average-atom model that employs the LTE average-atom
atomic data and thermodynamic functions along with the isolated-
ion atomic data. This approach facilitates fast and fairly accurate
computations with no need for extensive atomic datasets and is
therefore well suited for routine use in radiation-hydrodynamics
codes. We have also compared average ion charges, charge state dis-
tributions, and emission spectra of gold plasmas under strong NLTE
conditions obtained using collisional-radiative models employing
detailed configuration accounting (THERMOS) and the repre-
sentation of a single average-atom configuration supplemented
by a binomial distribution of configuration probabilities and the
superconfiguration approach (RESEOS). In most cases, the results
of the RESEOS and more detailed THERMOS calculations are
found to be in reasonable agreement both with each other and
with data from benchmark measurements at the OMEGA and
NOVA lasers, although in some cases we have revealed a modest
underestimation of the calculated average ion charges compared
with the experimental ones.
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